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Outline

– Clipping

– Operations before and after rasterization

M. I. Jubair 2



Credit

M. I. Jubair 3

CS4620: Introduction to 
Computer Graphics
Cornell University
Instructor: Steve Marschner
http://www.cs.cornell.edu/courses/cs46
20/2019fa/

http://www.cs.cornell.edu/courses/cs4620/2019fa/


Clipping (1/2)

• Clipping is a method to selectively enable or disable rendering 
operations within a defined region of interest.

– The primary use of clipping is to remove objects, lines, or line 
segments that are outside the viewing pane.
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Line Clipping (2/2)
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We must clip against a plane.
• Cyrus-Beck Parametric Line Clipping Algorithm



Inside/ outside of Half Plane (1/1)
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(𝑡 = 1)
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Parametric Eq. of a line (1/2)
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𝑝 𝑡 = 𝑝0 + 𝑡 𝑝1 − 𝑝0

p0

p1

(𝑡 = 0)

(𝑡 = 1)



Parametric Eq. of a line (2/2)
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𝑝 𝑡 = 𝑝0 + 𝑡 𝑝1 − 𝑝0

p0

p1

p(t)
(𝑡 = 0)

(𝑡 = 1)



Edge-line Intersection (1/7)
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p1

𝑁 = outward normal to the edge E

N



Edge-line Intersection (2/7)
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p0

p1

pE

N

p(t)

𝑁 = outward normal to the edge E

𝑝𝐸 = any point to the edge E

𝑝 𝑡 − 𝑝𝐸 = vector from 𝑝𝐸 to 𝑝 𝑡



Edge-line Intersection (3/7)
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p0

p1

p(t)

𝑁 = outward normal to the edge E

𝑁. 𝑝 𝑡 − 𝑝𝐸 > 0
• Angel between𝑁 and 𝑝 𝑡 − 𝑝𝐸 <90𝑜

𝑝𝐸 = any point to the edge E

𝑝 𝑡 − 𝑝𝐸 = vector from 𝑝𝐸 to 𝑝 𝑡

pE

N



Edge-line Intersection (4/7)

M. I. Jubair 12

p0

p1

p(t)𝑁. 𝑝 𝑡 − 𝑝𝐸 < 0
• Angel between𝑁 and 𝑝 𝑡 − 𝑝𝐸 >90𝑜

𝑁. 𝑝 𝑡 − 𝑝𝐸 > 0
• Angel between𝑁 and 𝑝 𝑡 − 𝑝𝐸 <90𝑜

𝑁 = outward normal to the edge E

𝑝𝐸 = any point to the edge E

𝑝 𝑡 − 𝑝𝐸 = vector from 𝑝𝐸 to 𝑝 𝑡

pE

N



Edge-line Intersection (5/7)
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𝑁. 𝑝 𝑡 − 𝑝𝐸 = 0
• Angel between𝑁 and 𝑝 𝑡 − 𝑝𝐸 = 90𝑜

p0

p1

p(t)
𝑁. 𝑝 𝑡 − 𝑝𝐸 < 0
• Angel between𝑁 and 𝑝 𝑡 − 𝑝𝐸 >90𝑜

𝑁. 𝑝 𝑡 − 𝑝𝐸 > 0
• Angel between𝑁 and 𝑝 𝑡 − 𝑝𝐸 <90𝑜

𝑁 = outward normal to the edge E

𝑝𝐸 = any point to the edge E

𝑝 𝑡 − 𝑝𝐸 = vector from 𝑝𝐸 to 𝑝 𝑡

pE

N



Edge-line Intersection (6/7)
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we know, 𝒑 𝒕 = 𝒑𝟎 + 𝒕 𝒑𝟏 − 𝒑𝟎

For intersection, 𝑵. 𝒑 𝒕 − 𝒑𝒆 = 𝟎 ………(1)

Putting into Eq.(1):
𝑁. 𝑝0 + 𝑡 𝑝1 − 𝑝0 − 𝑝𝐸 = 0

𝑡 =
𝑁. [𝑝0 − 𝑝𝐸]

−𝑁.𝐷

where, 𝐷 = 𝑝1 − 𝑝0

p0

p1

p(t)
𝑡 =

𝑁. [𝑝0 − 𝑝𝐸]

−𝑁. [𝑝1 − 𝑝0]

pE

N



Edge-line Intersection (7/7)
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p0

p1

p(t)

𝒕 =
𝑵. [𝒑𝟎 − 𝒑𝑬]

−𝑵.𝑫
where, 𝐷 = 𝑝1 − 𝑝0

Therefore, edge and line are intersected at –

pE

N



Check for Nonzero (1/2)
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p0

p1

p(t)

𝒕 =
𝑵. [𝒑𝟎 − 𝒑𝑬]

−𝑵.𝑫

However, 𝑁.𝐷 can not be zero.

We need to check –
• 𝑵 ≠ 𝟎 (by mistake, normal should 

not be 0)
• 𝑫 ≠ 𝟎 (means what?)
• 𝑵.𝑫 ≠ 𝟎 (means what?)

where, 𝐷 = 𝑝1 − 𝑝0

Therefore, edge and line are intersected at –

pE

N



Check for Nonzero (2/2)
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p0

p1

p(t)

𝒕 =
𝑵. [𝒑𝟎 − 𝒑𝑬]

−𝑵.𝑫

However, 𝑁.𝐷 can not be zero.

We need to check –
• 𝑵 ≠ 𝟎 (by mistake, normal should 

not be 0)
• 𝑫 ≠ 𝟎 (that is 𝑝1 ≠ 𝑝0 for a line)
• 𝑵.𝑫 ≠ 𝟎 (line and the normal are 

not perpendicular; line and edge are 
parallel)

where, 𝐷 = 𝑝1 − 𝑝0

Therefore, edge and line are intersected at –

pE

N



Inside/ outside Half Plane (1/1)
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p0

p0

p1 p1

(𝑡 = 0)

(𝑡 = 1)

(𝑡 =? )

𝑡 =
𝑁. [𝑝0 − 𝑝𝐸]

−𝑁.𝐷
Only this formula is 
not enough! Why?



Potentially Entering/ Leaving (1/1)
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p0

p0

p1 p1

(𝑡 = 0)

(𝑡 = 1)

(𝑡 =? )

Potentially Entering (𝑃𝑒)

Potentially Entering (𝑃𝑒)

Potentially Leaving (𝑃𝑙)

Potentially leaving (𝑃𝑙)



True Clipping Intersection (1/12)
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p0

pe1

𝑁

𝐷

p1

• 𝑁.𝐷 < 0 → 𝑃𝑒
• 𝑁.𝐷 > 0 → 𝑃𝑙



True Clipping Intersection (2/12)
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p0

p1

• 𝑁.𝐷 < 0 → 𝑃𝑒
• 𝑁.𝐷 > 0 → 𝑃𝑙

pe1

𝑁

𝐷



True Clipping Intersection (3/12)
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p0
pe1

pe2

𝑁

𝐷

p1

𝑷𝒆 𝑷𝒍

𝑡𝑒1 𝑡𝑒2

• 𝑁.𝐷 < 0 → 𝑃𝑒
• 𝑁.𝐷 > 0 → 𝑃𝑙



True Clipping Intersection (4/12)
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p0
pe1

pe2

pl1
𝑁

𝐷

p1

𝑷𝒆 𝑷𝒍

𝑡𝑒1 𝑡𝑒2 𝑡𝑙1

• 𝑁.𝐷 < 0 → 𝑃𝑒
• 𝑁.𝐷 > 0 → 𝑃𝑙



True Clipping Intersection (5/12)
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p0

p1

pe1

pe2

pl2

𝑁

𝐷

pl1

𝑷𝒆 𝑷𝒍

𝑡𝑒1 𝑡𝑒2 𝑡𝑙1 𝑡𝑙2

• 𝑁.𝐷 < 0 → 𝑃𝑒
• 𝑁.𝐷 > 0 → 𝑃𝑙



True Clipping Intersection (6/12)
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p0

p1

pe1

pe2

pl2

pl1

𝑷𝒆 𝑷𝒍

𝑡𝑒1 𝑡𝑒2 𝑡𝑙1 𝑡𝑙2

Are they in order?
Ascending or descending?



True Clipping Intersection (7/12)
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p0

p1

pe1

pe2

pl2

pl1

𝑷𝒆 𝑷𝒍

𝑡𝑒1 𝑡𝑒2 𝑡𝑙1 𝑡𝑙2

0 < 𝑡𝑒1< 𝑡𝑒2 < 𝑡𝑙1 < 𝑡𝑙2 < 1



True Clipping Intersection (8/12)
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p0

p1

pe1

pe2

pl2

pl1

• clip from 𝑝(𝑡𝐸) to 𝑝(𝑡𝐿)

𝑷𝒆 𝑷𝒍

𝑡𝑒1 𝒕𝒆𝟐 𝒕𝒍𝟏 𝑡𝑙2

𝒕𝑬 < 𝒕𝑳 :

• 𝑡𝐸 = max 𝑷𝒆

• 𝑡𝐿 = min 𝑷𝒍



True Clipping Intersection (9/12)
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pl2

pl1p0

p1

pL

𝑁
𝐷

𝑷𝒆 𝑷𝒍

𝑡𝑙

• 𝑁.𝐷 < 0 → 𝑃𝑒
• 𝑁.𝐷 > 0 → 𝑃𝑙



True Clipping Intersection (10/12)
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pe2

pl2

pl1p0

p1

pL

pE𝑁
𝐷

𝑷𝒆 𝑷𝒍

𝑡𝑒 𝑡𝑙

• 𝑁.𝐷 < 0 → 𝑃𝑒
• 𝑁.𝐷 > 0 → 𝑃𝑙



True Clipping Intersection (11/12)
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p0
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pe1

pe2

pl2

pl1p0

p1

pL

pE

𝑷𝒆 𝑷𝒍

𝑡𝑒 𝑡𝑙

1 > 𝑡𝑒 > 𝑡𝑙 > 0



True Clipping Intersection (12/12)
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p0

p1

pe1

pe2

pl2

pl1p0

p1

pL

pE

𝑷𝒆 𝑷𝒍

𝑡𝑒 𝑡𝑙

• 𝑡𝐸 = max(𝑷𝒆)
• 𝑡𝐿 = min(𝑷𝒍)

But this time,

𝒕𝑬> 𝒕𝑳 :

• Reject the line



Cyrus-Beck Algorithm (1/1)
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Known Cases (1/1)
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Operations Before and After 
Rasterization
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Before Rasterization (1/1)

Before a primitive can be rasterized:
– The vertices must be in screen:

• Modeling

• Viewing

• Projection transformations

• Original coordinates → screen space

– Attributes that are supposed to be 
interpolated must be known.
• colors, surface normals, or texture coordinates, 

is transformed as needed.

– Done in Vertex Processing stage
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Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner |  http://www.cs.cornell.edu/courses/cs4620/2019fa/



After Rasterization (1/1)

After a primitive can be rasterized:

– Computing a color and depth for 
each fragment (i.e. Shading).

– Performing blending phase.

• combines the fragments that 
overlapped.

• compute the final color.

– Done in Fragment Processing stage
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Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner |  http://www.cs.cornell.edu/courses/cs4620/2019fa/



A Minimal 3D Pipeline (2/16)

• Main challenge is – occlusion.
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A Minimal 3D Pipeline (3/16)

• Painter’s Algorithm

– Sort surfaces/ polygons by their depth (z values)

– Draw objects in order (farthest to closest)
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A Minimal 3D Pipeline (4/16)

• Painter’s Algorithm

– Disadvantage:

• Sometimes it is difficult to sort
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A Minimal 3D Pipeline (6/16)

• A frame buffer is a portion of memory (RAM) containing 
a bitmap that drives a video display.

– It is a memory buffer containing a complete frame of data
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A Minimal 3D Pipeline (7/16)

Z-buffer Algorithm:

• At each pixel we keep track 
of the distance to the closest 
surface that has been drawn 
so far

– we throw away fragments 
that are farther away than 
that distance.
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A Minimal 3D Pipeline (8/16)

Z-buffer Algorithm:

• Implementation:

– Red, green, and blue color values (frame buffer) + depth, or z-value 
(z-buffer).

• {(r, g ,b) , z}
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A Minimal 3D Pipeline (9/16)

Z-buffer Algorithm:
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(r, g, 
b)



A Minimal 3D Pipeline (10/16)

Z-buffer Algorithm:
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z

(r, g, 
b)

z-buffer



A Minimal 3D Pipeline (11/16)

Z-buffer Algorithm:
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(a)

(b)



A Minimal 3D Pipeline (12/16)

Z-buffer Algorithm:
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(a)

(b)

(a)



A Minimal 3D Pipeline (13/16)

Z-buffer Algorithm:
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(a)

(b)

(a)



A Minimal 3D Pipeline (14/16)

Z-buffer Algorithm:
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(a)

(b)

(a)

(b)



A Minimal 3D Pipeline (15/16)

Z-buffer Algorithm:
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(a)

(b)

(a)

(b)



A Minimal 3D Pipeline (16/16)

Z-buffer Algorithm:

• Done in the fragment blending phase.
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Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner |  http://www.cs.cornell.edu/courses/cs4620/2019fa/



Texture Mapping (1/3)
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• During shading, we read one of the color values from a texture.

– instead of using the attribute values (colors) that are attached to the 
geometry. 

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner |  http://www.cs.cornell.edu/courses/cs4620/2019fa/



Texture Mapping (2/3)
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Texture lookup:

• specifies a texture coordinate

– a point in the domain of the texture, and the texture-mapping.

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner |  http://www.cs.cornell.edu/courses/cs4620/2019fa/



Texture Mapping (3/3)
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• XY coordinate ↔ UV coordinate
• Example: Quad



Texture Mapping (3/3)
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• XY coordinate ↔ UV coordinate
• Example: triangle



Anti-aliasing (1/6)
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• Aliasing

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner |  http://www.cs.cornell.edu/courses/cs4620/2019fa/



Anti-aliasing (2/6)
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• Anti-aliasing

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner |  http://www.cs.cornell.edu/courses/cs4620/2019fa/



Anti-aliasing (3/6)
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• Anti-aliasing:

– Box filtering by supersampling

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner |  http://www.cs.cornell.edu/courses/cs4620/2019fa/



Anti-aliasing (4/6)
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• Anti-aliasing:

– Box filtering by supersampling

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner |  http://www.cs.cornell.edu/courses/cs4620/2019fa/



Anti-aliasing (5/6)
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• Anti-aliasing:

– Box filtering by supersampling

Credit: Fundamentals of 
Computer Graphics 3rd Edition by 
Peter Shirley, Steve Marschner |  
http://www.cs.cornell.edu/cours
es/cs4620/2019fa/



Anti-aliasing (6/6)
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• Anti-aliasing:

– Box filtering by supersampling

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner |  http://www.cs.cornell.edu/courses/cs4620/2019fa/



Backface Culling (1/3)

• Removal of primitives facing away from the 
camera.

– Polygons that face away from the eye are certain 
to be overdrawn by polygons that face the eye.

• Those polygons can be culled before the pipeline even 
starts.
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Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner |  http://www.cs.cornell.edu/courses/cs4620/2019fa/



Backface Culling (2/3)

• If polygon normal is facing away from the viewer 
then it is “backfacing”.

• For solid objects, polygon will not be seen.

• Thus, if N.V > 0 , then cull polygon.
• V is vector from eye to point on polygon

M. I. Jubair 62

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner |  http://www.cs.cornell.edu/courses/cs4620/2019fa/



Backface Culling (3/3)

• If polygon normal is facing away from the viewer 
then it is “backfacing”.

• For solid objects, polygon will not be seen.

• Thus, if N.V > 0 , then cull polygon.
• V is vector from eye to point on polygon

Q: Disadvantage?
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Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner |  http://www.cs.cornell.edu/courses/cs4620/2019fa/



Practice Problem

• Verify Cyrus-Beck line clipping algorithm for different condition.
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